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stepped pressure equilibrium code : readme

1.

The stepped pressure equilibrium code.

2. The stepped pressure equilibrium code [1] seeks numerical solutions to macroscopic force balance between the pressure

gradient and the Lorentz force in arbitrary, non-axisymmetric toroidal configurations, with fields of arbitrary topology.
Generally, non-axisymmetric toroidal magnetic fields are non-integrable, so the magnetic field is not guaranteed to be
tangential to a set of continually nested magnetic surfaces.

3. Equilibrium solutions are cast as extrema of a constrained energy functional.

4. Consider a plasma region comprised of a set of Ny = Nvol nested annular regions, which are separated by a discrete set

of toroidal interfaces, Z;. We insist that the fields are tangential to the interfaces. In each volume, V;, bounded by the
711 and 7; interfaces, the plasma energy, U;, the global-helicity, H;, and the mass, M;, are given by the integrals:
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H = A B dv, (2)
M, = /pl/“’ dv, (3)
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where B =V x A. The pressure, p, is a scalar function of position.

. The equilibrium states that we seek [2] minimize the total plasma energy, subject to the constraints of conserved helicity

and conserved mass/entropy in each annular region. We allow arbitrary variations in the pressure in each annulus, Jp,
the magnetic field in each annulus, A, and the geometry of the interfaces, €, except that we assume the magnetic field
remains tangential to the interfaces which we consider to act as ‘ideal barriers’.

The free-energy functional we seek to extremize is
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where p; and v are Lagrange multipliers (and are constant over each volume, V).

. The first variation in the plasma energy, allowing variations in the pressure, dp, the field, A, and interface geometry, &,

is given
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Using the identity V- (A xB) =B -V x A — A -V x B and integrating by parts we obtain
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The interfaces are assumed to be ideal, so in the surface integrals we make use of Faraday’s law ;B =V x E and the
ideal Ohm’s law E + v x B = 0 to obtain the expression §A = £ x B. The variation in the plasma energy becomes
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A similar analysis shows that the first variation in the helicity is

§H, = 2/ B - JA dv. (8)
Vi
The variation in the plasma mass is

pt/v L
oM, = /—5pdv—|—/ pY/7(n-€) ds.
v TP Wy



Combining these expressions, the first variation in the free-energy functional is
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The Euler-Lagrange equation for variations in the pressure is vp'/? = vp/(y — 1). For constant v; this indicates that
p = const. in each volume.

+

The Euler-Lagrange equation for variations in the variations in the vector-potential is the Beltrami equation, Eq.(10).

V x B = puoB. (10)
The Euler-Lagrange equation for variations in the interface geometry, using v;p'/7 = vp/(vy — 1), is

o+ B2/200]| = 0. (11)

The pressure may have discrete jumps at the interfaces, and so globally non-trivial pressure profiles may be constructed,
provided the total pressure, p + B2 /2y, is continuous.

7. Only the variations in the geometry normal to the interfaces, (n - &), are relevant: tangential variations do not alter the
energy functional. To constrain the tangential degrees of freedom, additional constraints derived from minimizing the
spectral width are included.

8. An auxiliary analysis [3] indicates that, in order to support non-trivial pressure, the interfaces must have strongly irrational
transform.

0.1.1 numerical descretization

1. A set of Ny nested, toroidal surfaces is given on input. For expedience, we restrict attention to stellarator symmetric
devices [4] so that the interfaces may be described

Ri(0,¢) = Zj Ry ; Cos(mje - nj()a (12)
Z(0,Q) = >, Zi5sin(m;6 — n;Q).

2. The coordinate functions R(s,d,¢) and Z(s,0, () take the form
R(s,0,¢) = X; Rj(s)cos(m;0 — n;(), (13)

Z(s,6,¢) = >2; Z;(s)sin(m;0 — n;(),
where the functions R;(s), Z;(s) are constructed by piecewise-cubic interpolation of the R; ; and Z ;.

3. In the I-th annulus, bounded by the (I — 1)-th and I-th interfaces, a general covariant representation of the magnetic
vector-potential is written

Al = ASJVS + AQJVQ + AC’lVC. (14)

To this add Vg(s, 8, (), where g; satisfies

8sgl(8397<) - _%S,l(saaac)v
0p91(51-1,0,¢) = —Api(s1-1,0,C) +Pri-1, (15)
0c91(51-1,0,¢) = —A¢i(51-1,0,¢) + ¥pi—1,

for arbitrary constants ¢ ;—1, ¥pi—1, which are the toroidal and poloidal-fluxes on the interior of surface [ —1. Then
A;=A;+ Vg is given by A; = A911V9 + AC,ZVC with

Ae,l(sl—lveac) = 1/&,1—17 (16)
Aca(51-1,0,0) = Ypi-1.

This specifies the gauge.



4. For stellarator symmetric equilibria, Ag; and A¢; may be represented by cosine series

Ag(s,0,¢) = > Agyj(s) cos(m;0 — n;Q), (17)
Aca(s,0,C) =325 Acj(s) cos(m;f — n;Q),

where Ag; ;(s) and Ac; ;(s) are represented using finite-elements.

0.1.2 compilation

1. The source is kept under CVS: >cvs -d /u/shudson/cvs_Spec/ checkout Spec
2. Compilation is provided by a Makefile: >make xspec. Try >make help for compilation options.

(a) The compilation flags are given by FLAGS. These may be over-ruled by command line arguments.
(b) Compilation flags must be set that convert single precision to double precision, e.g. make FLAGS="--dbl".
(¢) The NAG library is used and must be correctly linked.
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